Alliander: Energy Autonomous Smart Micro-grids

In recent years, more and more distributed generation has been installed on a neighborhood level. When enough (renewable) generation like PV panels, biomass installations and wind-turbines and storage are installed, it is possible to create a self-supplying neighborhood in a so-called energy autonomous smart micro-grid. A neighborhood can be a collection of residential buildings, but also small business parks, a university campus, a pop festival or a village in a remote area.

Since (renewable) distributed generation is not (always) producing the energy when it is needed, and consumption is also not always predictable, a micro-grid behaves highly stochastic. An energy autonomous neighborhood should always be in balance, i.e. at all times the energy consumption should be approximately the same as the production, where up to a certain
level, mismatches between consumption and generation can be bridged by energy storage. In a less extreme scenario, when there is temporary shortage of energy the main electricity grid could be used for back up and similarly the neighborhood might provide excess energy to the grid when energy is expensive. In case of emergency in the main grid, the micro-grid can become autonomous temporarily. This means that the autonomous grid must be able to switch to/from the main grid, without interruption of the power supply. To reach this goal, an ICT based control system needs to be developed.

This project consists of three parts: A) the stochastic modeling of an autonomous neighborhood, B) the development of multi-level control algorithms and C) creating a support tool for planning future micro-grids. Finally, the system will be validated in a realistic environment.

Free Joomla Templates designed by Web Hosting Top